Title :
On the Construction of Skew Quasi-Cyclic Codes
Author :
Abualrub, Taher ; Ghrayeb, Ali ; Aydin, Nuh ; Siap, Irfan
Author_Institution :
Dept. of Math. & Stat., American Univ. of Sharjah, Sharjah, United Arab Emirates
fDate :
5/1/2010 12:00:00 AM
Abstract :
In this paper, we study a special type of quasi-cyclic (QC) codes called skew QC codes. This set of codes is constructed using a noncommutative ring called the skew polynomial ring F[x;¿]. After a brief description of the skew polynomial ring F[x;¿], it is shown that skew QC codes are left submodules of the ring Rsl=( F[x;¿]/(xs-1) )l. The notions of generator and parity-check polynomials are given. We also introduce the notion of similar polynomials in the ring F[x;¿] and show that parity-check polynomials for skew QC codes are unique up to similarity. Our search results lead to the construction of several new codes with Hamming distances exceeding the Hamming distances of the previously best known linear codes with comparable parameters.
Keywords :
Hamming codes; cyclic codes; parity check codes; polynomials; Hamming distances; noncommutative ring; parity-check polynomials; skew QC codes; skew polynomial ring; skew quasi-cyclic codes; Councils; Error correction codes; Galois fields; Linear code; Mathematics; Modules (abstract algebra); Parity check codes; Polynomials; Statistics; New codes; quasi-cyclic codes; skew fields;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2010.2044062