DocumentCode :
1476130
Title :
Hash property and coding theorems for sparse matrices and maximum-likelihood coding
Author :
Muramatsu, J. ; Miyake, S.
Author_Institution :
Commun. Sci. Labs., NTT Corp., Seika, Japan
Volume :
56
Issue :
5
fYear :
2010
fDate :
5/1/2010 12:00:00 AM
Firstpage :
2143
Lastpage :
2167
Abstract :
The aim of this paper is to prove the achievability of rate regions for several coding problems by using sparse matrices (with logarithmic column degree) and maximum-likelihood (ML) coding. These problems are the Gel´fand-Pinsker problem, the Wyner-Ziv problem, and the one-helps-one problem (source coding with partial side information at the decoder). To this end, the notion of a hash property for an ensemble of functions is introduced and it is proved that an ensemble of q-ary sparse matrices satisfies the hash property. Based on this property, it is proved that the rate of codes using sparse matrices and ML coding can achieve the optimal rate.
Keywords :
cryptography; maximum likelihood decoding; source coding; sparse matrices; Gelfand-Pinsker problem; Wyner-Ziv problem; coding theorem; hash property; logarithmic column degree; maximum-likelihood coding; one-helps-one problem; q-ary sparse matrices; source coding; Channel coding; Information theory; Linear code; Maximum likelihood decoding; Source coding; Sparse matrices; Sufficient conditions; Symmetric matrices; Gel´fand–Pinsker problem; Hash property; Shannon theory; Wyner–Ziv problem; linear codes; maximum-likelihood encoding/decoding; one-helps-one problem; sparse matrix;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2010.2043781
Filename :
5452198
Link To Document :
بازگشت