DocumentCode :
1476137
Title :
Two-Dimensional Optical Orthogonal Codes and Semicyclic Group Divisible Designs
Author :
Wang, Jianmin ; Yin, Jianxing
Author_Institution :
Dept. of Math., Suzhou Univ., Suzhou, China
Volume :
56
Issue :
5
fYear :
2010
fDate :
5/1/2010 12:00:00 AM
Firstpage :
2177
Lastpage :
2187
Abstract :
A (nxm, k, ¿) two-dimensional optical orthogonal code (2-D OOC), C, is a family of nxm (0, 1)-arrays of constant weight k such that ¿i=1n¿j=0m-1A(i, j)B(i, j¿m¿) ¿ ¿ for any arrays A, B in C and any integer ¿ except when A = B and ¿ ¿ 0 (mod m ), where ¿m denotes addition modulo m. Such codes are of current practical interest as they enable optical communication at lower chip rate. To simplify practical implementation, the AM-OPPW (at most one-pulse per wavelength) restriction is often appended to a 2-D OOC. An AM-OPPW 2-D OOC is optimal if its size is the largest possible. In this paper, the notion of a perfect AM-OPPW 2-D OOC is proposed, which is an optimal (nxm, k, ¿) AM-OPPW 2-D OOC with cardinality [(m ¿ n(n-1)...(n-¿))/(k(k-1)...(k-¿))] . A link between optimal (nxm, k, ¿) AM-OPPW 2-D OOCs and block designs is developed. Some new constructions for such optimal codes are described by means of semicyclic group divisible designs. Several new infinite families of perfect (nxm, k, 1) AM-OPPW 2-D OOCs with k ¿ {2, 3, 4} are thus produced.
Keywords :
optical fibre communication; orthogonal codes; 2D optical orthogonal codes; optical communication; semicyclic group divisible designs; Binary codes; Binary sequences; Hamming weight; Multiaccess communication; Optical arrays; Optical design; Optical fiber communication; Two dimensional displays; Wavelength division multiplexing; Wireless communication; 2-D; Group divisible design; holey $t$ -packing; optical orthogonal code (OOC); semicyclic;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2010.2043772
Filename :
5452199
Link To Document :
بازگشت