DocumentCode :
1480395
Title :
Construction of quasi-cyclic LDPC codes based on a two-dimensional MDS code
Author :
Chen, Chao ; Bai, Baoming ; Wang, Xinmei
Author_Institution :
State Key Lab. of ISN, Xidian Univ., Xi´´an, China
Volume :
14
Issue :
5
fYear :
2010
fDate :
5/1/2010 12:00:00 AM
Firstpage :
447
Lastpage :
449
Abstract :
In this letter, we first propose a general framework for constructing quasi-cyclic low-density parity-check (QCLDPC) codes based on a two-dimensional (2-D) maximum distance separable (MDS) code. Two classes of QC-LDPC codes are defined, whose parity-check matrices are transposes of each other. We then use a 2-D generalized Reed-Solomon (GRS) code to give a concrete construction. The decoding parity-check matrices have a large number of redundant parity-check equations while their Tanner graphs have a girth of at least 6. The minimum distances of the codes are very respectable. Experimental studies show that the constructed QC-LDPC codes perform well with the sum-product algorithm (SPA).
Keywords :
Reed-Solomon codes; decoding; parity check codes; 2D MDS code; 2D generalized Reed-Solomon code; 2D maximum distance separable code; decoding parity-check matrices; low-density parity-check codes; quasicyclic LDPC codes; redundant parity-check equations; sum-product algorithm; Chaos; Concrete; Equations; Galois fields; Iterative decoding; Parity check codes; Quantum cascade lasers; Reed-Solomon codes; Sum product algorithm; Two dimensional displays; Low-density parity-check (LDPC) code, quasicyclic (QC) code, finite field, maximum distance separable (MDS) code, generalized Reed-Solomon (GRS) code;
fLanguage :
English
Journal_Title :
Communications Letters, IEEE
Publisher :
ieee
ISSN :
1089-7798
Type :
jour
DOI :
10.1109/LCOMM.2010.05.100008
Filename :
5456061
Link To Document :
بازگشت