Title :
Sparse Representation for Computer Vision and Pattern Recognition
Author :
Wright, John ; Ma, Yi ; Mairal, Julien ; Sapiro, Guillermo ; Huang, Thomas S. ; Yan, Shuicheng
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
fDate :
6/1/2010 12:00:00 AM
Abstract :
Techniques from sparse signal representation are beginning to see significant impact in computer vision, often on nontraditional applications where the goal is not just to obtain a compact high-fidelity representation of the observed signal, but also to extract semantic information. The choice of dictionary plays a key role in bridging this gap: unconventional dictionaries consisting of, or learned from, the training samples themselves provide the key to obtaining state-of-the-art results and to attaching semantic meaning to sparse signal representations. Understanding the good performance of such unconventional dictionaries in turn demands new algorithmic and analytical techniques. This review paper highlights a few representative examples of how the interaction between sparse signal representation and computer vision can enrich both fields, and raises a number of open questions for further study.
Keywords :
computer vision; signal representation; algorithmic techniques; analytical techniques; computer vision; pattern recognition; semantic information; sparse signal representation; state-of-the-art results; training samples; unconventional dictionaries; Algorithm design and analysis; Application software; Asia; Computer vision; Data mining; Dictionaries; Face recognition; Joining processes; Pattern recognition; Signal processing algorithms; Signal representations; Compressed sensing; computer vision; pattern recognition; signal representations;
Journal_Title :
Proceedings of the IEEE
DOI :
10.1109/JPROC.2010.2044470