DocumentCode :
1482522
Title :
Completely Stale Transmitter Channel State Information is Still Very Useful
Author :
Maddah-Ali, Mohammad Ali ; Tse, David
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA
Volume :
58
Issue :
7
fYear :
2012
fDate :
7/1/2012 12:00:00 AM
Firstpage :
4418
Lastpage :
4431
Abstract :
Transmitter channel state information (CSIT) is crucial for the multiplexing gains offered by advanced interference management techniques such as multiuser multiple-input multiple-output (MIMO) and interference alignment. Such CSIT is usually obtained by feedback from the receivers, but the feedback is subject to delays. The usual approach is to use the fed back information to predict the current channel state and then apply a scheme designed assuming perfect CSIT. When the feedback delay is large compared to the channel coherence time, such a prediction approach completely fails to achieve any multiplexing gain. In this paper, we show that even in this case, the completely stale CSI is still very useful. More concretely, we show that in an MIMO broadcast channel with transmit antennas and receivers each with 1 receive antenna, K/1+1/2+···+1/K (>;1) degrees of freedom is achievable even when the fed back channel state is completely independent of the current channel state. Moreover, we establish that if all receivers have independent and identically distributed channels, then this is the optimal number of degrees of freedom achievable. In the optimal scheme, the transmitter uses the fed back CSI to learn the side information that the receivers receive from previous transmissions rather than to predict the current channel state. Our result can be viewed as the first example of feedback providing a degree-of-freedom gain in memoryless channels.
Keywords :
MIMO communication; feedback; interference suppression; multiuser channels; receiving antennas; transmitting antennas; CSIT; MIMO broadcast channel; advanced interference management technique; channel coherence time; degree-of-freedom gain; feedback delay; interference alignment; memoryless channel; multiplexing gains; multiuser multiple-input multiple-output channel; transmit antenna; transmit receiver; transmitter channel state information; Delay; Equations; Receiving antennas; Signal to noise ratio; Transmitting antennas; Feedback delay; interference alignment; multiple-antenna channels; network coding, output feedback; side information; vector Gaussian broadcast channels;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2012.2193116
Filename :
6177666
Link To Document :
بازگشت