DocumentCode :
1486196
Title :
Optimizing the performance of polynomial adaptive filters: making quadratic filters converge like linear filters
Author :
Therrien, Charles W. ; Jenkins, W. Kenneth ; Li, Xiaohui
Author_Institution :
Dept. of Electr. & Comput. Eng., Naval Postgraduate Sch., Monterey, CA, USA
Volume :
47
Issue :
4
fYear :
1999
fDate :
4/1/1999 12:00:00 AM
Firstpage :
1169
Lastpage :
1171
Abstract :
The correlation properties of the input vector determine the rate of convergence of the LMS algorithm for Volterra adaptive filters and are optimal when the nonlinear input terms are uncorrelated. This correspondence presents new results on the correlation properties for second-order Volterra filters and shows that when the input signal is whitened, the nonlinear terms automatically become uncorrelated
Keywords :
adaptive filters; adaptive signal processing; convergence of numerical methods; correlation methods; least mean squares methods; nonlinear filters; polynomials; LMS algorithm; Volterra adaptive filters; convergence rate; correlation properties; input vector; linear filters; nonlinear filter; nonlinear terms; performance optimisation; polynomial adaptive filters; quadratic filters; second-order Volterra filters; uncorrelated nonlinear input terms; whitened input signal; Adaptive filters; Convergence; Kernel; Least squares approximation; Nonlinear equations; Nonlinear filters; Polynomials; Vectors;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.752619
Filename :
752619
Link To Document :
بازگشت