Title : 
Online learning partial least squares regression model for univariate response data
         
        
            Author : 
Lei Qin ; Snoussi, Hichem ; Abdallah, Fadi
         
        
            Author_Institution : 
Inst. Charles Delaunay, Univ. de Technol. de Troyes, Troyes, France
         
        
        
        
        
        
            Abstract : 
Partial least squares (PLS) analysis has attracted increasing attentions in image and video processing. Currently, most applications employ batch-form PLS methods, which require maintaining previous training data and re-training the model when new observations are available. In this work, we propose a novel approach that is able to update the PLS model in an online fashion. The proposed approach has the appealing property of constant computational complexity and const space complexity. Two extensions are proposed as well. First, we extend the method to be able to update the model when some training samples are removed. Second, we develop a weighted version, where different weights can be assigned to the data blocks when updating the model. Experiments on real image data confirmed the effectiveness of the proposed methods.
         
        
            Keywords : 
computational complexity; image processing; learning (artificial intelligence); least squares approximations; computational complexity; data blocks; image processing; online learning partial least squares regression model; space complexity; univariate response data; video processing; Algorithm design and analysis; Computational modeling; Data models; Equations; Mathematical model; Matrix decomposition; Training; Partial Least Squares Analysis; image processing; online learning;
         
        
        
        
            Conference_Titel : 
Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European
         
        
            Conference_Location : 
Lisbon