DocumentCode :
1488019
Title :
Feature-Driven Multilayer Visualization for Remotely Sensed Hyperspectral Imagery
Author :
Cai, Shangshu ; Du, Qian ; Moorhead, Robert J.
Author_Institution :
Center for Risk Studies & Safety, Univ. of California Santa Barbara, Goleta, CA, USA
Volume :
48
Issue :
9
fYear :
2010
Firstpage :
3471
Lastpage :
3481
Abstract :
Displaying the abundant information contained in a remotely sensed hyperspectral image is a challenging problem. Currently, no approach can satisfactorily render the desired information at arbitrary levels of detail. In this paper, we present a feature-driven multilayer visualization technique that automatically chooses data visualization techniques based on the spatial distribution and importance of the endmembers. It can simultaneously visualize the overall material distribution, subpixel level details, and target pixels and materials. By incorporating interactive tools, different levels of detail can be presented per users´ request. This scheme employs five layers from the bottom to the top: the background layer, data-driven spot layer, pie-chart layer, oriented sliver layer, and anomaly layer. The background layer provides the basic tone of the display; the data-driven spot layer manifests the overall material distribution in an image scene; the pie-chart layer presents the precise abundances of endmember materials in each pixel; the oriented sliver layer emphasizes the distribution of important anomalous materials; and the anomaly layer highlights anomaly pixels (i.e., potential targets). Displays of the airborne AVIRIS data and spaceborne Hyperion data demonstrate that the proposed multilayer visualization scheme can efficiently display more information globally and locally.
Keywords :
data visualisation; geophysical image processing; geophysical techniques; airborne AVIRIS data; anomaly layer; background layer; data visualization techniques; data-driven spot layer; endmember materials; feature-driven multilayer visualization; hyperspectral image visualization; mixed-pixel visualization; oriented sliver layer; pie-chart layer; remotely sensed hyperspectral imagery; spaceborne Hyperion data; spatial distribution; Color; Data visualization; Displays; Hyperspectral imaging; Hyperspectral sensors; Layout; Nonhomogeneous media; Personal communication networks; Pixel; Principal component analysis; Hyperspectral image visualization; mixed-pixel visualization; multilayer visualization;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2010.2047021
Filename :
5462947
Link To Document :
بازگشت