Title :
Statistical Wavelet Subband Characterization Based on Generalized Gamma Density and Its Application in Texture Retrieval
Author :
Choy, S.K. ; Tong, C.S.
Author_Institution :
Dept. of Math., Hong Kong Baptist Univ., Kowloon, China
Abstract :
The modeling of image data by a general parametric family of statistical distributions plays an important role in many applications. In this paper, we propose to adopt the three-parameter generalized gamma density (G??D) for modeling wavelet detail subband histograms and for texture image retrieval. The advantage of G??D over the existing generalized Gaussian density (GGD) is that it provides more flexibility to control the shape of model which is critical for practical histogram-based applications. To measure the discrepancy between G??Ds, we use the symmetrized Kullback-Leibler distance (SKLD) and derive a closed form for the SKLD between G??Ds. Such a distance can be computed directly and effectively via the model parameters, making our proposed scheme particularly suitable for image retrieval systems with large image database. Experimental results on the well-known databases reveal the superior performance of our proposed method compared with the current existing approaches.
Keywords :
Gaussian processes; image retrieval; image texture; visual databases; wavelet transforms; generalized Gaussian density; image retrieval systems; large image database; statistical wavelet subband characterization; symmetrized Kullback-Leibler distance; texture image retrieval; three-parameter generalized gamma density; Generalized gamma density; texture retrieval;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2009.2033400