Title :
Near-Field Scanning Nanophotonic Microscopy—Breaking the Diffraction Limit Using Integrated Nano Light-Emitting Probe Tip
Author :
Hoshino, Kazunori ; Gopal, Ashwini ; Zhang, Xiaojing
Author_Institution :
Dept. of Biomed. Eng., Univ. of Texas at Austin, Austin, TX, USA
Abstract :
We introduce a novel scanning ldquonanophotonicrdquo microscope through monolithic integration of a nanoscale LED (Nano-LED) on a silicon cantilever. We review two recent trends of incorporating miniature light sources on the scanning probes for near-field scanning optical microscopy: one is to attach fluorephores at the tip to define a small light source, while the other is to integrate an LED and a nanometer aperture into scanning probes, based on silicon microfabrication techniques. The creation of Nano-LED combines the advantages of previous two approaches: no external sources are required and the reduction of the light source size directly leads to resolution improvement. Two types of Nano-LEDs have been successfully demonstrated utilizing nanofabrication and microelectromechanical systems technologies: 1) formation of thin silicon dioxide light-emitting layer between heavily doped p + and n+ silicon layers created by a focused ion beam and 2) electrostatic trapping and excitation of CdSe/ZnS core-shell nanoparticles in a nanogap. We employed these probes into a standard near-field scanning and excitation setup. The probe successfully measured optical as well as topographic images of chromium test patterns with imaging resolutions of 400 and 50 nm, respectively. In addition, the directional resolution dependence of the acquired images suggests the size and shape of the light source. To our knowledge, these results are probably the first successful near-field images directly measured by such tip-embedded light sources. With the potential emission capability from near UV to IR and additional mass producibility, the nanophotonic microscope presents exciting opportunities in near-field optics, integrated circuit technology, nanomanufacturing and molecular imaging, and sensing in biomedicine.
Keywords :
II-VI semiconductors; cadmium compounds; electrostatics; elemental semiconductors; focused ion beam technology; image resolution; integrated optics; light emitting diodes; nanoparticles; nanophotonics; near-field scanning optical microscopy; silicon; wide band gap semiconductors; zinc compounds; CdSe-ZnS; Si; core-shell nanoparticles; diffraction limit; directional resolution; electrostatic trapping; fluorephores; focused ion beam; image resolution; integrated nano light-emitting probe tip; light-emitting layer; microelectromechanical systems; microfabrication; miniature light sources; monolithic integration; nanofabrication; nanogap; nanometer aperture; nanoscale LED; near-field scanning nanophotonic microscopy; silicon cantilever; Fluorescence; LEDs; near-field scanning optical microscopy (NSOM); quantum dots (QDs); scanning probes;
Journal_Title :
Selected Topics in Quantum Electronics, IEEE Journal of
DOI :
10.1109/JSTQE.2009.2015964