DocumentCode :
14896
Title :
Deepest Minimum Criterion for Biased Affine Estimation
Author :
Cernuschi-Frias, Bruno ; Gama, Fernando ; Casaglia, Daniel
Author_Institution :
Inst. Argentino de Mat., Bariloche, Argentina
Volume :
62
Issue :
9
fYear :
2014
fDate :
1-May-14
Firstpage :
2437
Lastpage :
2449
Abstract :
A new strategy called the Deepest Minimum Criterion (DMC) is presented for optimally obtaining an affine transformation of a given unbiased estimator, when a-priori information on the parameters is known. Here, it is considered that the samples are drawn from a distribution parametrized by an unknown deterministic vector parameter. The a-priori information on the true parameter vector is available in the form of a known subset of the parameter space to which the true parameter vector belongs. A closed form exact solution is given for the non-linear DMC problem in which it is known that the true parameter vector belongs to an ellipsoidal ball and the covariance matrix of the unbiased estimator does not depend on the parameters. A closed form exact solution is also given for the Min-Max strategy for this same case.
Keywords :
covariance matrices; parameter estimation; signal processing; a-priori information; affine transformation; biased affine estimation; covariance matrix; deepest minimum criterion; deterministic vector parameter; ellipsoidal ball; min-max strategy; nonlinear DMC problem; parameter vector; signal processing; unbiased estimator; Cost function; Covariance matrices; Educational institutions; Estimation; Parameter estimation; Symmetric matrices; Vectors; Affine bias; biased estimation; constrained estimators; least-squares methods; non-linear optimization; parameter estimation; positive definite matrices;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2014.2309094
Filename :
6750773
Link To Document :
بازگشت