• DocumentCode
    14896
  • Title

    Deepest Minimum Criterion for Biased Affine Estimation

  • Author

    Cernuschi-Frias, Bruno ; Gama, Fernando ; Casaglia, Daniel

  • Author_Institution
    Inst. Argentino de Mat., Bariloche, Argentina
  • Volume
    62
  • Issue
    9
  • fYear
    2014
  • fDate
    1-May-14
  • Firstpage
    2437
  • Lastpage
    2449
  • Abstract
    A new strategy called the Deepest Minimum Criterion (DMC) is presented for optimally obtaining an affine transformation of a given unbiased estimator, when a-priori information on the parameters is known. Here, it is considered that the samples are drawn from a distribution parametrized by an unknown deterministic vector parameter. The a-priori information on the true parameter vector is available in the form of a known subset of the parameter space to which the true parameter vector belongs. A closed form exact solution is given for the non-linear DMC problem in which it is known that the true parameter vector belongs to an ellipsoidal ball and the covariance matrix of the unbiased estimator does not depend on the parameters. A closed form exact solution is also given for the Min-Max strategy for this same case.
  • Keywords
    covariance matrices; parameter estimation; signal processing; a-priori information; affine transformation; biased affine estimation; covariance matrix; deepest minimum criterion; deterministic vector parameter; ellipsoidal ball; min-max strategy; nonlinear DMC problem; parameter vector; signal processing; unbiased estimator; Cost function; Covariance matrices; Educational institutions; Estimation; Parameter estimation; Symmetric matrices; Vectors; Affine bias; biased estimation; constrained estimators; least-squares methods; non-linear optimization; parameter estimation; positive definite matrices;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2014.2309094
  • Filename
    6750773