DocumentCode :
1490807
Title :
Intersection matrices for partitions by binary perfect codes
Author :
Avgustinovich, Sergey V. ; Lobstein, Antoine C. ; Solov´eva, Faina I.
Author_Institution :
Sobolev Inst. of Math., Novosibirsk, Russia
Volume :
47
Issue :
4
fYear :
2001
fDate :
5/1/2001 12:00:00 AM
Firstpage :
1621
Lastpage :
1624
Abstract :
We investigate the following problem: given two partitions of the Hamming space, their intersection matrix provides the cardinalities of the pairwise intersections of the subsets of these partitions. If we consider partitions by extended perfect codes, how many intersection matrices can we construct?
Keywords :
binary codes; concatenated codes; matrix algebra; Hamming space; Latin squares; binary perfect codes; cardinalities; concatenation; extended perfect codes; intersection matrices; pairwise intersections; partitions; Buildings; Codes; Mathematics;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.923749
Filename :
923749
Link To Document :
بازگشت