• DocumentCode
    1490899
  • Title

    16-Point Reversible Integer Discrete Fourier Transform With 12 Control Bits

  • Author

    Grigoryan, Artyom M.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of Texas at San Antonio, San Antonio, TX, USA
  • Volume
    58
  • Issue
    2
  • fYear
    2010
  • Firstpage
    912
  • Lastpage
    916
  • Abstract
    This correspondence discusses the reversible integer 16-point discrete Fourier transform (RiDFT) which uses integer operations with control bits. The decomposition of the RiDFT is based on the paired representation, when the Fourier transform is split recursively into a set of short transforms of orders 8, 4, 2, and 1. Control bits allow for inverting the integer approximations of multiplications by twiddle factors. The proposed 16-point RiDFT uses 16 operations of real multiplication and 62 additions. The integer approximation of the transform with eight control bits with additional two lifting schemes, which requires two more multiplications, is also considered.
  • Keywords
    approximation theory; discrete Fourier transforms; 12 control bits; 16-point reversible integer discrete Fourier transform; RiDFT; integer approximations; twiddle factors; Fast Fourier transform; integer transforms; lifting scheme; paired transform;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2009.2032999
  • Filename
    5276840