DocumentCode :
1494538
Title :
All-Digital Background Calibration of a Successive Approximation ADC Using the “Split ADC” Architecture
Author :
McNeill, John A. ; Ka Yan Chan ; Coln, M.C.W. ; David, C.L. ; Brenneman, C.
Author_Institution :
Worcester Polytech. Inst., Worcester, MA, USA
Volume :
58
Issue :
10
fYear :
2011
Firstpage :
2355
Lastpage :
2365
Abstract :
The “split ADC” architecture enables fully digital calibration and correction of nonlinearity errors due to capacitor mismatch in a successive approximation (SAR) ADC. The die area of a single ADC design is split into two independent halves, each converting the same input signal. Total area and power is unchanged, resulting in minimal increase in analog complexity. For each conversion, the half-sized ADCs generate two independent outputs which are digitally corrected using estimates of capacitor mismatch errors for each ADC. The ADC outputs are averaged to produce the ADC output code. The difference of the two outputs is used in a background calibration algorithm which estimates the error in the correction parameters. Any nonzero difference drives an LMS feedback loop toward zero difference which can only occur when the average error in each correction parameter is zero. A novel segmentation and shuffling scheme in the SAR capacitive DAC enables background calibration for a wide range of input signals including dc. Simulation of a 16 bit 1 Msps SAR ADC in 180 nm CMOS shows calibration convergence within 200 000 samples.
Keywords :
CMOS digital integrated circuits; analogue-digital conversion; approximation theory; calibration; capacitors; least mean squares methods; ADC output code; CMOS process; LMS feedback loop; SAR capacitive ADC design; all-digital background calibration algorithm; analog complexity; capacitor mismatch errors; nonlinearity error correction; segmentation scheme; shuffling scheme; size 180 nm; successive approximation ADC design; word length 16 bit; CMOS integrated circuits; Calibration; Capacitors; Least squares approximation; Switches; Adaptive systems; analog-digital conversion; calibration; digital background calibration; mixed analog-digital integrated circuits; self-calibrating;
fLanguage :
English
Journal_Title :
Circuits and Systems I: Regular Papers, IEEE Transactions on
Publisher :
ieee
ISSN :
1549-8328
Type :
jour
DOI :
10.1109/TCSI.2011.2123590
Filename :
5750068
Link To Document :
بازگشت