DocumentCode :
1495191
Title :
Intermittent Estimation for Gaussian Processes
Author :
Molnár-Sáska, Gábor ; Morvai, Gusztáv
Author_Institution :
Morgan Stanley Hungary Analytics, Ltd., Budapest, Hungary
Volume :
56
Issue :
6
fYear :
2010
fDate :
6/1/2010 12:00:00 AM
Firstpage :
2778
Lastpage :
2782
Abstract :
Let {Xn}n=0 ¿ be a stationary real-valued Gaussian time series. We estimate the conditional expectation E(Xn+1|X0, ...,Xn) from a growing number of observations X0,..., Xn in a pointwise consistent way along a sequence of stopping times.
Keywords :
Gaussian processes; information theory; time series; Gaussian process; conditional expectation; intermittent estimation; stationary real-valued Gaussian time series; stopping time; Gaussian distribution; Gaussian processes; H infinity control; Markov processes; Scholarships; Stochastic processes; Technological innovation; Conditional expectation; Gaussian process; estimation; stopping time;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2010.2046219
Filename :
5466524
Link To Document :
بازگشت