DocumentCode :
1495357
Title :
Tunstall Code, Khodak Variations, and Random Walks
Author :
Drmota, Michael ; Reznik, Yuriy A. ; Szpankowski, Wojciech
Author_Institution :
Inst. Discrete Math. & Geometry, Tech. Univ. Wien, Vienna, Austria
Volume :
56
Issue :
6
fYear :
2010
fDate :
6/1/2010 12:00:00 AM
Firstpage :
2928
Lastpage :
2937
Abstract :
A variable-to-fixed length encoder partitions the source string into variable-length phrases that belong to a given and fixed dictionary. Tunstall, and independently Khodak, designed variable-to-fixed length codes for memoryless sources that are optimal under certain constraints. In this paper, we study the Tunstall and Khodak codes using variety of techniques ranging from stopping times for sums of independent random variables to Tauberian theorems and Mellin transform. After proposing an algebraic characterization of the Tunstall and Khodak codes, we present new results on the variance and a central limit theorem for dictionary phrase lengths. This analysis also provides a new argument for obtaining asymptotic results about the mean dictionary phrase length and average redundancy rates.
Keywords :
algebra; random processes; transforms; variable length codes; Khodak variation; Mellin transform; Tauberian theorem; Tunstall code; algebraic characterization; average redundancy rate; dictionary phrase length; random walk; variable-to-fixed length encoder; Binary codes; Computer science; Dictionaries; Digital recording; Geometry; Information theory; Mathematics; Random variables; Redundancy; Source coding; Analytic information theory; Mellin transform; Tauberian theorems; Tunstall code; renewal theory; stopping time; variable-to-fixed length codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2010.2046248
Filename :
5466547
Link To Document :
بازگشت