DocumentCode :
1496830
Title :
A Computational Framework for Uncertainty Quantification and Stochastic Optimization in Unit Commitment With Wind Power Generation
Author :
Constantinescu, Emil M. ; Zavala, Victor M. ; Rocklin, Matthew ; Lee, Sangmin ; Anitescu, Mihai
Author_Institution :
Math. & Comput. Sci. Div., Argonne Nat. Lab., Argonne, IL, USA
Volume :
26
Issue :
1
fYear :
2011
Firstpage :
431
Lastpage :
441
Abstract :
We present a computational framework for integrating a state-of-the-art numerical weather prediction (NWP) model in stochastic unit commitment/economic dispatch formulations that account for wind power uncertainty. We first enhance the NWP model with an ensemble-based uncertainty quantification strategy implemented in a distributed-memory parallel computing architecture. We discuss computational issues arising in the implementation of the framework and validate the model using real wind-speed data obtained from a set of meteorological stations. We build a simulated power system to demonstrate the developments.
Keywords :
power generation dispatch; power generation scheduling; wind power plants; NWP model; computational framework; distributed memory parallel computing architecture; ensemble-based uncertainty quantification strategy; meteorological station; power system simulation; state-of-the-art numerical weather prediction model; stochastic optimization; stochastic unit commitment-economic dispatch formulation; wind power generation; wind speed data; Closed-loop; economic dispatch; unit commitment; weather forecasting; wind;
fLanguage :
English
Journal_Title :
Power Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8950
Type :
jour
DOI :
10.1109/TPWRS.2010.2048133
Filename :
5467169
Link To Document :
بازگشت