Title :
Application of Adaptive Sliding Mode Control for Regenerative Braking Torque Control
Author :
Fazeli, Amir ; Zeinali, Meysar ; Khajepour, Amir
Author_Institution :
Dept. of Mech. Eng., Univ. of Waterloo, Waterloo, ON, Canada
Abstract :
In air hybrid vehicles, there are two independent braking systems: frictional and regenerative. Since the regenerative braking torque is proportional to the parameters such as tank pressure and engine speed, a controller is needed for the control of the regenerative braking torque generated by internal combustion engine, based on the driver preference. In this work, a nonlinear control approach based on adaptive sliding-mode control (ASMC) is employed to tackle the problem of engine torque control during regenerative mode. To this end, a novel mean value model for a recently proposed cam-based air hybrid engine is derived for the regenerative mode and employed for designing the controller. The adaptive sliding-mode controller incorporates the approximately known inverse dynamic model output of the engine as a model-base component of the controller, and an estimated uncertainty term to compensate for the unmodeled dynamics, external disturbances (e.g., gear shifting), and time-varying system parameters such as tank pressure. The robustness and performance of the controller for this particular application is investigated and compared with that of a high-gain PID controller and a smooth sliding-mode controller numerically and experimentally. The results show that the controller performs remarkably well in terms of the robustness, tracking error convergence, and disturbance attenuation. Chattering effect is also removed by utilizing the ASMC scheme.
Keywords :
adaptive control; aerospace engines; aircraft control; braking; compensation; control system synthesis; internal combustion engines; nonlinear control systems; three-term control; time-varying systems; torque control; variable structure systems; vehicle dynamics; ASMC scheme; adaptive sliding mode control; automotive industry; cam-based air hybrid vehicles; controller design; disturbance attenuation; engine speed; engine torque control; external disturbance compensation; high-gain PID controller; internal combustion engine; mean value model; nonlinear control approach; regenerative braking torque control; regenerative mode; tank pressure; time-varying system parameter compensation; tracking error convergence; unmodeled dynamic compensation; Adaptation model; Atmospheric modeling; Engines; Manifolds; Mathematical model; Torque; Valves; Adaptive sliding-mode control (ASMC); air hybrid engines; engine torque control; regenerative braking;
Journal_Title :
Mechatronics, IEEE/ASME Transactions on
DOI :
10.1109/TMECH.2011.2129525