Title :
SAR Image Multiclass Segmentation Using a Multiscale TMF Model in Wavelet Domain
Author :
Peng Zhang ; Ming Li ; Yan Wu ; Ming Liu ; Fan Wang ; Lu Gan
Author_Institution :
Nat. Key Lab. of Radar Signal Process., Xidian Univ., Xi´an, China
Abstract :
The triplet Markov field (TMF) model recently proposed is suitable for dealing with nonstationary synthetic aperture radar (SAR) image segmentation. In this letter, we propose a multiscale TMF model in wavelet domain, named as the wavelet-domain TMF (WTMF) model. In the WTMF model, a multiscale causal WTMF energy function is constructed to capture the intra- and interscale dependences in random fields (X, U). Moreover, multiscale likelihoods of the WTMF model are derived based on a wavelet hidden Markov tree to capture the statistical properties of wavelet coefficients. The proposed model can integrate the global and local information in terms of spatial configuration and image features in a more complete manner. The coarser scale information is utilized to guide the finer scale segmentation, and the coarseto-fine causal interactions are considered using a Markov chain. Experimental results prove that the proposed model can segment SAR images better than several models previously proposed.
Keywords :
hidden Markov models; image segmentation; radar imaging; synthetic aperture radar; WTMF model; coarse scale information utilization; interscale dependency; intrascale dependency; multiscale TMF model; multiscale causal WTMF energy function; multiscale likelihood; nonstationary SAR image multiclass segmentation; statistical property; synthetic aperture radar; triplet Markov field model; wavelet hidden Markov tree; wavelet-domain TMF model; Computational modeling; Hidden Markov models; Image segmentation; Markov processes; Noise; Numerical models; Speckle; Hidden Markov tree (HMT); WTMF model; multiclass segmentation; synthetic aperture radar (SAR) image; wavelet-domain triplet Markov field (WTMF) energy function;
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
DOI :
10.1109/LGRS.2012.2189094