Title :
Local asymptotic coding and the minimum description length
Author :
Foster, Dean P. ; Stine, Robert A.
Author_Institution :
Dept. of Stat., Pennsylvania Univ., Philadelphia, PA, USA
fDate :
5/1/1999 12:00:00 AM
Abstract :
Local asymptotic arguments imply that parameter selection via the minimum description length (MDL) resembles a traditional hypothesis test. A common approximation for MDL estimates the cost of adding a parameter at about (1/2)log n bits for a model fit to n observations. While accurate for parameters which are large on a standardized scale, this approximation overstates the parameter cost near zero. We find that encoding the parameter produces a shorter description length when the corresponding estimator is about two standard errors away from zero, as in a traditional statistical hypothesis test
Keywords :
encoding; parameter estimation; random processes; statistical analysis; MDL; approximation; local asymptotic coding; minimum description length; model; observations; parameter cost; parameter encoding; parameter selection; random variables; standardized scale; statistical hypothesis test; Costs; Data compression; Encoding; Parametric statistics; Random variables; Source coding; Testing;
Journal_Title :
Information Theory, IEEE Transactions on