DocumentCode :
1503202
Title :
Modeling and Simulation in Support of System Level Design for High Acceleration Linear Motors
Author :
Dudgeon, Graham ; Braverman, Igor ; Tamminana, Krishna
Author_Institution :
MathWorks, Inc., Natick, MA, USA
Volume :
97
Issue :
11
fYear :
2009
Firstpage :
1818
Lastpage :
1830
Abstract :
Software tools offer powerful support in the areas of engineering specification, design, implementation, and test. The tools are at their most potent when they actively promote agility and responsiveness throughout a product life cycle and leave a legacy of knowledge to inform future product development. Model-based design facilitates these benefits by considering a simulation of the system under development as an executable specification. This executable specification may be regarded as ldquoone truthrdquo across engineering teams with the simulation being abstracted or enhanced as appropriate. First-principle, data-driven, and physical modeling further strengthens model-based design, by allowing the agility and responsiveness afforded by model-based design to be relevant for both algorithmic and nonalgorithmic design considerations. Indeed, models are a powerful means to offer support for in-service operation, diagnostics of unintended operations and assessment and upgrades of control systems and/or system architectures during the entire life-cycle of a product. This paper will consider the benefits of physical modeling and model-based design through an example of a high acceleration linear motor. The motor type, power electronic-drive switching strategy, and power-electronic drive architecture will be considered. Finally, the use of parallel computing within the context of this application will be discussed, in particular as an effective means to generate results for a large number of operational scenarios in a time-effective manner.
Keywords :
electric machine CAD; electric machine analysis computing; linear motors; computer-based modeling; computer-based simulation; executable specification; high acceleration linear motors; high-acceleration transportation systems; parallel computing; power electronic-drive switching strategy; product development; product life cycle; system level design; Acceleration; Algorithm design and analysis; Computer architecture; Delay; Design engineering; Power engineering and energy; Power system modeling; Software testing; Software tools; System-level design; Electric drives; linear motors; physical modeling;
fLanguage :
English
Journal_Title :
Proceedings of the IEEE
Publisher :
ieee
ISSN :
0018-9219
Type :
jour
DOI :
10.1109/JPROC.2009.2030238
Filename :
5290113
Link To Document :
بازگشت