Title :
A Method for Compact Image Representation Using Sparse Matrix and Tensor Projections Onto Exemplar Orthonormal Bases
Author :
Gurumoorthy, Karthik S. ; Rajwade, Ajit ; Banerjee, Arunava ; Rangarajan, Anand
Author_Institution :
Dept. of Comput. & Inf. Sci. & Eng., Univ. of Florida, Gainesville, FL, USA
Abstract :
We present a new method for compact representation of large image datasets. Our method is based on treating small patches from a 2-D image as matrices as opposed to the conventional vectorial representation, and encoding these patches as sparse projections onto a set of exemplar orthonormal bases, which are learned a priori from a training set. The end result is a low-error, highly compact image/patch representation that has significant theoretical merits and compares favorably with existing techniques (including JPEG) on experiments involving the compression of ORL and Yale face databases, as well as a database of miscellaneous natural images. In the context of learning multiple orthonormal bases, we show the easy tunability of our method to efficiently represent patches of different complexities. Furthermore, we show that our method is extensible in a theoretically sound manner to higher-order matrices (??tensors??). We demonstrate applications of this theory to compression of well-known color image datasets such as the GaTech and CMU-PIE face databases and show performance competitive with JPEG. Lastly, we also analyze the effect of image noise on the performance of our compression schemes.
Keywords :
image representation; sparse matrices; tensors; 2D image; ORL face databases; Yale face databases; compact image representation; exemplar orthonormal bases; miscellaneous natural images database; sparse matrix; tensor projections; Compact representation; compression; greedy algorithm; higher-order singular value decomposition (HOSVD); singular value decomposition (SVD); sparse projections; tensor decompositions;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2009.2034991