DocumentCode :
1503521
Title :
On the minimum phase property of prediction-error polynomials
Author :
Vaidyanathan, P.P. ; Tuqan, J. ; Kirac, A.
Author_Institution :
Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA
Volume :
4
Issue :
5
fYear :
1997
fDate :
5/1/1997 12:00:00 AM
Firstpage :
126
Lastpage :
127
Abstract :
We provide a simple proof of the minimum phase property of the optimum linear prediction polynomial. The proof follows directly from the fact that the minimized prediction error has to satisfy the orthogonality principle. Additional insights provided by this proof are also discussed.
Keywords :
error analysis; filtering theory; polynomials; prediction theory; FIR filter; minimized prediction error; minimum phase property; orthogonality principle; prediction-error polynomials; Autocorrelation; Finite impulse response filter; IIR filters; Lattices; Linear predictive coding; Nonlinear filters; Poles and zeros; Polynomials;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/97.575554
Filename :
575554
Link To Document :
بازگشت