DocumentCode :
1504014
Title :
New High Stopping Power Thin Scintillators Based on {\\rm Lu}_{2}{\\rm O}_{3} and {\\rm Lu}_{3}{\\rm Ga}</div>
        </div>
        <div class='row'>
            <div class='leftDiv labelDiv col-xs-4 col-sm-2 fullRecLabelEnglish'>Author : </div><div class='valueDiv leftDirection leftAlign col-xs-8 col-sm-10 fullRecValueEnglish'>Martin, Thierry ; Douissard, Paul-Antoine ; Seeley, Zachary ; Cherepy, Nerine ; Payne, Stephen ; Mathieu, Eric ; Schuladen, Jan</div>
        </div>
        <div class='row'>
            <div class='leftDiv labelDiv col-xs-4 col-sm-2 fullRecLabelEnglish'>Author_Institution : </div><div class='valueDiv leftDirection leftAlign col-xs-8 col-sm-10 fullRecValueEnglish'>Eur. Synchrotron Radiat. Facility, Grenoble, France</div>
        </div>
        <div class='row'>
            <div class='leftDiv labelDiv col-xs-4 col-sm-2 fullRecLabelEnglish'>Volume : </div><div class='valueDiv leftDirection leftAlign col-xs-8 col-sm-10 fullRecValueEnglish'>59</div>
        </div>
        <div class='row'>
            <div class='leftDiv labelDiv col-xs-4 col-sm-2 fullRecLabelEnglish'>Issue : </div><div class='valueDiv leftDirection leftAlign col-xs-8 col-sm-10 fullRecValueEnglish'>5</div>
        </div>
        <div class='row'>
            <div class='leftDiv labelDiv col-xs-4 col-sm-2 fullRecLabelEnglish'>fYear : </div><div class='valueDiv leftDirection leftAlign col-xs-8 col-sm-10 fullRecValueEnglish'>2012</div>
        </div>
        <div class='row'>
            <div class='leftDiv labelDiv col-xs-4 col-sm-2 fullRecLabelEnglish'>Firstpage : </div><div class='valueDiv leftDirection leftAlign col-xs-8 col-sm-10 fullRecValueEnglish'>2269</div>
        </div>
        <div class='row'>
            <div class='leftDiv labelDiv col-xs-4 col-sm-2 fullRecLabelEnglish'>Lastpage : </div><div class='valueDiv leftDirection leftAlign col-xs-8 col-sm-10 fullRecValueEnglish'>2274</div>
        </div>
        <div class='row'>
            <div class='leftDiv labelDiv col-xs-4 col-sm-2 fullRecLabelEnglish'>Abstract : </div><div class='valueDiv leftDirection leftAlign col-xs-8 col-sm-10 fullRecValueEnglish'>X-ray computed tomography devices and X-ray diffraction techniques are powerful tools: the former provide volumetric data of samples during a non-destructive examination for biology and material science, and the latter measure grain orientation and strain, as well as crystalline phase identification and structure refinement. Today, the European Synchrotron Radiation Facility (ESRF) provides increasingly higher energy beams, up to 150 keV combined with higher brilliance (10<sup>13</sup> X-ray photons/sec). This means that detectors suffer from low X-ray absorption at high spatial resolution (1-10 μm) and from radiation damage in tomography and diffraction applications. In addition, more and more experiments in medicine require the absorbed dose by the sample to be reduced. In this context, more efficient scintillators are developed and evaluated at the ESRF. In order to perform sub-micrometer and micrometer resolution imaging scintillators 1 μm to 500 μm thin are required. Single Crystal Film scintillators (SCF), 1 μm to 100 μm can be obtained via Liquid Phase Epitaxy for sub-micrometer resolution. Transparent ceramics, 100 μm to 500 μm thick are promising candidates for X-ray imaging requiring high X-ray absorption and good contrast with micrometer resolution. Commonly available scintillators, such as CdWO<sub>4</sub> and YAG:Ce suffer from low efficiency, therefore new scintillators with higher light yield and stopping-power are required. A first test was carried out to evaluate an Europium doped Lutetium Oxide ceramic for micrometer resolution and new SCFs of Lu<sub>3</sub>Ga<sub>5-x</sub>In<sub>x</sub>O<sub>12</sub>:Eu for sub-micrometer resolution are investigated. Performance of Lu<sub>2</sub>O<sub>3</sub> and LuInGG, i.e absorption, light yield, afterglow, spatial resolution will be presented and compared to standard screens (YAG, GGG). First results will be illustrated with X-ray images and will demonst- ate the absorption efficiency improvement at high spatial resolution.</div>
        </div>
        <div class='row'>
            <div class='leftDiv labelDiv col-xs-4 col-sm-2 fullRecLabelEnglish'>Keywords : </div><div class='valueDiv leftDirection leftAlign col-xs-8 col-sm-10 fullRecValueEnglish'>X-ray absorption spectra; X-ray imaging; afterglows; computerised tomography; energy loss of particles; epitaxial layers; europium; grain refinement; liquid phase epitaxial growth; lutetium compounds; European Synchrotron Radiation Facility; Lu<sub>3</sub>Ga<sub>5-x</sub>In<sub>x</sub>O<sub>12</sub>:Eu; X-ray absorption; X-ray computed tomography; X-ray diffraction; absorbed dose; absorption efficiency; afterglow; crystalline phase; grain orientation; high energy beams; high resolution X-ray imaging; high stopping power thin scintillators; light yield; liquid phase epitaxy; micrometer resolution; micrometer resolution imaging scintillators; nondestructive examination; single crystal film scintillators; size 1 mum to 500 mum; spatial resolution; structure refinement; transparent ceramics; Absorption; Ceramics; Charge coupled devices; Spatial resolution; Substrates; X-ray imaging; <formula formulatype= ${rm Lu}_{2}{rm O}_{3}!:!{rm Eu}$; ${rm Lu}_{3}{rm Ga}_{5-{rm x}}{rm In}_{rm x}{rm O}_{12}!!:!{rm Eu}$; X-ray imaging; high-resolution;
fLanguage :
English
Journal_Title :
Nuclear Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9499
Type :
jour
DOI :
10.1109/TNS.2012.2189248
Filename :
6190739
Link To Document :
بازگشت