DocumentCode :
1504689
Title :
Flow Mapping and Multivariate Visualization of Large Spatial Interaction Data
Author :
Guo, Diansheng
Author_Institution :
Dept. of Geogr., Univ. of South Carolina, Columbia, SC, USA
Volume :
15
Issue :
6
fYear :
2009
Firstpage :
1041
Lastpage :
1048
Abstract :
Spatial interactions (or flows), such as population migration and disease spread, naturally form a weighted location-to-location network (graph). Such geographically embedded networks (graphs) are usually very large. For example, the county-to-county migration data in the U.S. has thousands of counties and about a million migration paths. Moreover, many variables are associated with each flow, such as the number of migrants for different age groups, income levels, and occupations. It is a challenging task to visualize such data and discover network structures, multivariate relations, and their geographic patterns simultaneously. This paper addresses these challenges by developing an integrated interactive visualization framework that consists three coupled components: (1) a spatially constrained graph partitioning method that can construct a hierarchy of geographical regions (communities), where there are more flows or connections within regions than across regions; (2) a multivariate clustering and visualization method to detect and present multivariate patterns in the aggregated region-to-region flows; and (3) a highly interactive flow mapping component to map both flow and multivariate patterns in the geographic space, at different hierarchical levels. The proposed approach can process relatively large data sets and effectively discover and visualize major flow structures and multivariate relations at the same time. User interactions are supported to facilitate the understanding of both an overview and detailed patterns.
Keywords :
cartography; data visualisation; user interfaces; county-to-county migration data; geographic space; integrated interactive visualization framework; interactive flow mapping; large spatial interaction data; multivariate clustering; multivariate visualization; spatially constrained graph partitioning method; weighted location-to-location network; Data mining; Data visualization; Decision making; Demography; Diseases; Earth; Humans; Multidimensional systems; Transportation; Urban planning; contiguity constraints; coordinated views; data mining; flow mapping; graph partitioning; hierarchical clustering; multidimensional visualization; spatial interaction;
fLanguage :
English
Journal_Title :
Visualization and Computer Graphics, IEEE Transactions on
Publisher :
ieee
ISSN :
1077-2626
Type :
jour
DOI :
10.1109/TVCG.2009.143
Filename :
5290710
Link To Document :
بازگشت