Title :
On the robustness of single-loop sigma-delta modulation
Author :
Güntürk, C. Sinan ; Lagarias, Jeffrey C. ; Vaishampayan, Vinay A.
Author_Institution :
Program in Appl. & Comput. Math., Princeton Univ., NJ, USA
fDate :
7/1/2001 12:00:00 AM
Abstract :
Sigma-delta modulation, a widely used method of analog-to-digital (A/D) signal conversion, is known to be robust to hardware imperfections, i.e., bit streams generated by slightly imprecise hardware components can be decoded comparably well. We formulate a model for robustness and give a rigorous analysis for single-loop sigma-delta modulation applied to constant signals (DC inputs) for N time cycles, with an arbitrary (small enough) initial condition uo, and a quantizer that may contain an offset error. The mean-square error (MSE) of any decoding scheme for this quantizer (with uo and the offset error known) is bounded below by 1/96N-3. We also determine the asymptotically best possible MSE as N→∞ for perfect decoding when uo=0 and uo=½. The robustness result is the upper bound that a triangular linear filter decoder (with both uo and the offset error unknown) achieves an MSE of 40/3N-3. These results establish the known result that the O(1/N3) decay of the MSE with N is optimal in the single-loop case, under weaker assumptions than previous analyses, and show that a suitable linear decoder is robust against offset error. These results are obtained using methods from number theory and Fourier analysis
Keywords :
Fourier analysis; decoding; filtering theory; mean square error methods; number theory; quantisation (signal); sigma-delta modulation; A/D signal conversion; DC inputs; Fourier analysis; MSE; analog-to-digital signal conversion; bit streams; constant signals; decoding; hardware imperfections robustness; imprecise hardware components; mean-square error; number theory; offset error; quantizer; robustness model; single-loop sigma-delta modulation; triangular linear filter decoder; upper bound; Decoding; Delta-sigma modulation; Feedback; Filtering; Hardware; Nonlinear filters; Quantization; Robustness; Signal analysis; Signal generators;
Journal_Title :
Information Theory, IEEE Transactions on