DocumentCode :
1505573
Title :
Operating Policy and Optimal Sizing of a High Penetration RES-BESS System for Small Isolated Grids
Author :
Vrettos, Evangelos I. ; Papathanassiou, Stavros A.
Author_Institution :
Sch. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens (NTUA), Athens, Greece
Volume :
26
Issue :
3
fYear :
2011
Firstpage :
744
Lastpage :
756
Abstract :
Load demand in small autonomous island systems is typically covered by Diesel Units (DU). Although a favourable renewable energy source (RES) potential might exist, the technical constraints introduced by the conventional generators result in relatively low RES penetration levels, typically up to 15%-20% of the annual energy demand. To overcome such limitations, introduction of energy storage is necessary. In the case of very small islands (less than 1 MW peak load), lead-acid battery energy storage systems (BESS) constitute a technically mature solution with considerable application potential. In this paper, the potential for achieving very high RES penetration levels with the introduction of BESS in an existing small island system is investigated. An operating policy is first introduced for the overall system, including conventional generators, RES (wind and photovoltaic) stations and storage system. Simulation results are then presented to quantify the expected energy benefits in terms of RES energy penetration and the impact on the economics of the island system. The sizing of the hybrid system components is then investigated by conducting a parametric analysis and then optimized by applying genetic algorithms.
Keywords :
battery storage plants; distributed power generation; genetic algorithms; government policies; lead acid batteries; power distribution economics; power generation economics; power grids; diesel units; genetic algorithms; high penetration RES-BESS system; hybrid system components; lead-acid battery energy storage systems (; operating policy; optimal sizing; renewable energy source; small autonomous island systems; small isolated grids; Batteries; Biological system modeling; Discharges; Generators; Mathematical model; Power generation; System-on-a-chip; Genetic algorithms; hybrid station; island systems; lead-acid batteries; operating policy; optimization methods; storage; wind energy;
fLanguage :
English
Journal_Title :
Energy Conversion, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8969
Type :
jour
DOI :
10.1109/TEC.2011.2129571
Filename :
5756654
Link To Document :
بازگشت