Title :
Lead zirconate titanate/poly(vinylidene fluoride-trifluoroethylene) 1-3 composites for ultrasonic transducer applications
Author :
Kwok, Kin Wing ; Chan, Helen Lai Wah ; Choy, Chung Loong
Author_Institution :
Dept. of Appl. Phys., Hong Kong Polytech., Kowloon, Hong Kong
fDate :
5/1/1999 12:00:00 AM
Abstract :
A new procedure for preparing lead zirconate titanate (PZT)/poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) 1-3 composites with both phases piezoelectrically active is described. Sintered PZT rods are inserted into a prepoled copolymer matrix, and the composite is repoled under a lower electric field. Using this new procedure, the dipoles in the two phases are aligned in either the same or opposite directions. Composite disks, of 12.7-cm diameter and 0.33- to 0.60-mm thicknesses, have been fabricated with PZT rods of 0.8 or 1 mm diameter distributed in a square pattern with 3 mm center-to-center separation. The ceramic volume contents of the composite disks are 3.6 and 5.6%, respectively. The resonance characteristics of the composite disks consist of the resonance modes of the two constituent phases, but they are dominated by the coupled longitudinal thickness mode (H-mode) of the PZT rods. The coupled radial mode (L-mode) resonance of the PZT rods is significant only for thin disks. The observed resonance frequencies of the H- and L-modes agree well with the values calculated from the coupling theory. The thickness mode resonance of the copolymer matrix (T-mode) is present but hardly observable in thick disks. The composite disks have been fabricated into transducers with air-backing and with no front face matching layer, and their performance characteristics have been evaluated in water. The transmitting and receiving voltage responses of a PZT/P(VDF-TrFE) composite transducer are better than those of a PZT/epoxy composite transducer. The transmitting and receiving voltage responses are improved when the PZT rods and copolymer matrix are poled in opposite directions, especially when the resonance frequencies of the H- and T-modes are approximately equal. When the phases are poled in the same direction and the resonance peaks associated with the Hand T-modes just overlap, the bandwidth is improved. Using 0.33-mm thick composite disks, a transducer can b- produced with three operating frequencies by poling the constituent phases in the same direction, or with two operating frequencies at equal efficiency by poling the constituent phases in opposite directions. The PZT/P(VDF-TrFE) 1-3 composite transducer, especially the one with multiple operating frequencies, should be very promising in the applications of medical ultrasonic imaging.
Keywords :
acoustic impedance; biomedical ultrasonics; filled polymers; lead compounds; polymer blends; ultrasonic transducers; 0.33 to 0.60 mm; 0.8 mm; 1 mm; 12.7 cm; Hand T-modes; PZT; PZT rods; PbZrO3TiO3; center-to-center separation; ceramic volume contents; coupled longitudinal thickness mode; coupling theory; medical ultrasonic imaging; operating frequencies; prepoled copolymer matrix; receiving voltage response; resonance characteristics; transmitting voltage response; ultrasonic transducer applications; Bandwidth; Biomedical transducers; Ceramics; Couplings; Resonance; Resonant frequency; Titanium compounds; Ultrasonic transducers; Voltage; Water;
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on