DocumentCode :
1509065
Title :
Indirect adaptive control via parallel dynamic neural networks
Author :
Yu, W. ; Poznyak, A.S.
Author_Institution :
Seccion de Control Autom., CINVESTAV-IPN, Mexico City, Mexico
Volume :
146
Issue :
1
fYear :
1999
fDate :
1/1/1999 12:00:00 AM
Firstpage :
25
Lastpage :
30
Abstract :
Stability conditions for a parallel dynamic neural network by means of Lyapunov-like analysis are determined. The new learning law ensures that the identification error converges to zero (model matching) or to a bounded zone (with unmodelled dynamics). Based on the neural identifier we present a local optimal controller and analyse the tracking error. Our principal contributions are that we provide a bound for the identification error of the parallel neuro identifier and that we then establish a bound for the tracking error of the neurocontrol
Keywords :
Lyapunov methods; adaptive control; control system analysis; identification; learning systems; neurocontrollers; optimal control; stability criteria; Lyapunov-like analysis; bounded zone; error bounds; identification error convergence; indirect adaptive control; local optimal controller; model matching; neural identifier; parallel dynamic neural networks; parallel neuro identifier; stability conditions; tracking error; unmodelled dynamics;
fLanguage :
English
Journal_Title :
Control Theory and Applications, IEE Proceedings -
Publisher :
iet
ISSN :
1350-2379
Type :
jour
DOI :
10.1049/ip-cta:19990368
Filename :
764963
Link To Document :
بازگشت