DocumentCode :
1510189
Title :
Large-scale data visualization using parallel data streaming
Author :
Ahrens, James ; Brislawn, Kristi ; Martin, Ken ; Geveci, Berk ; Law, C. Charles ; Papka, Michael
Author_Institution :
Los Alamos Nat. Lab., NM, USA
Volume :
21
Issue :
4
fYear :
2001
Firstpage :
34
Lastpage :
41
Abstract :
We present an architectural approach based on parallel data streaming to enable visualizations on a parallel cluster. Our approach requires less memory than other visualizations while achieving high code reuse. We implemented our architecture within the Visualization Toolkit (VTK). It includes specific additions to support message passing interfaces (MPIs); memory limit-based streaming of both implicit and explicit topologies; translation of streaming requests between topologies; and passing data and pipeline control between shared, distributed, and mixed memory configurations. The architecture directly supports both sort-first and sort-last parallel rendering
Keywords :
data visualisation; parallel programming; rendering (computer graphics); workstation clusters; Visualization Toolkit; architectural approach; code reuse; large-scale data visualization; memory limit-based streaming; message passing interfaces; parallel cluster; parallel data streaming; pipeline control; sort-first; sort-last parallel rendering; Application software; Data mining; Data visualization; Feature extraction; Isosurfaces; Laboratories; Large-scale systems; Parallel processing; Pipelines; Streaming media;
fLanguage :
English
Journal_Title :
Computer Graphics and Applications, IEEE
Publisher :
ieee
ISSN :
0272-1716
Type :
jour
DOI :
10.1109/38.933522
Filename :
933522
Link To Document :
بازگشت