DocumentCode :
1511332
Title :
A framework for state-space estimation with uncertain models
Author :
Sayed, Ali H.
Author_Institution :
Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA
Volume :
46
Issue :
7
fYear :
2001
fDate :
7/1/2001 12:00:00 AM
Firstpage :
998
Lastpage :
1013
Abstract :
Develops a framework for state-space estimation when the parameters of the underlying linear model are subject to uncertainties. Compared with existing robust filters, the proposed filters perform regularization rather than deregularization. It is shown that, under certain stabilizability and detectability conditions, the steady-state filters are stable and that, for quadratically-stable models, the filters guarantee a bounded error variance. Moreover, the resulting filter structures are similar to various (time- and measurement-update, prediction, and information) forms of the Kalman filter, albeit ones that operate on corrected parameters rather than on the given nominal parameters. Simulation results and comparisons with ℋ guaranteed-cost, and set-valued state estimation filters are provided
Keywords :
Kalman filters; least squares approximations; matrix algebra; parameter estimation; state estimation; state-space methods; ℋ guaranteed-cost filters; bounded error variance; detectability; quadratically-stable models; regularization; set-valued state estimation filters; stabilizability; state-space estimation; uncertain models; Extraterrestrial measurements; Information filtering; Information filters; Kalman filters; Nonlinear filters; Parameter estimation; Robustness; State estimation; Steady-state; Uncertainty;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.935054
Filename :
935054
Link To Document :
بازگشت