DocumentCode :
1512361
Title :
Interdiffusion induced polarization-independent optical gain of an InGaAs-InP quantum-well with carrier effects
Author :
Choy, Wallace C.H. ; Li, E. Herbert ; Chan, Michael C Y ; Weiss, Bernard L.
Author_Institution :
Sch. of Electron. Eng., Surrey Univ., Guildford, UK
Volume :
35
Issue :
6
fYear :
1999
fDate :
6/1/1999 12:00:00 AM
Firstpage :
913
Lastpage :
921
Abstract :
A theoretical study of the polarization-independent optical gain using group V sublattice interdiffusion in InGaAs-InP quantum wells (QWs) is presented here. The reverse bias and carrier effects on the subband structures, transition energy, and optical gain of the interdiffused QW are discussed. The interdiffused QW structures are optimized in terms of their subband structure, carrier density, structural parameters, and properties of optical gain spectra. The results show that an optimized interdiffused QW structure can produce polarization-independent optical gain over a range of operation wavelengths around 1.5 μm, although the differential gain and linewidth enhancement factor are slightly degraded. The required tensile strain for the polarization-independent optical properties of a lattice-matched QW structure may be generated using interdiffusion. These results suggest that polarization-independent optical devices can be fabricated using interdiffusion in a lattice-matched InGaAsP QW structure
Keywords :
III-V semiconductors; chemical interdiffusion; gallium arsenide; indium compounds; light polarisation; semiconductor device models; semiconductor quantum wells; 1.5 mum; InGaAs-InP; InGaAs-InP quantum wells; InGaAs-InP quantum-well carrier effects; carrier density; carrier effects; differential gain; group V sublattice interdiffusion; interdiffused QW structures; interdiffusion induced polarization-independent optical gain; lattice-matched InGaAsP QW structure; lattice-matched QW structure; linewidth enhancement factor; optical gain; polarization-independent optical devices; reverse bias; subband structures; transition energy; Atom optics; Optical devices; Optical mixing; Optical modulation; Optical polarization; Optical refraction; Optical variables control; Quantum wells; Stimulated emission; Tensile strain;
fLanguage :
English
Journal_Title :
Quantum Electronics, IEEE Journal of
Publisher :
ieee
ISSN :
0018-9197
Type :
jour
DOI :
10.1109/3.766834
Filename :
766834
Link To Document :
بازگشت