DocumentCode :
1512558
Title :
Improved image decoding over noisy channels using minimum mean-squared estimation and a Markov mesh
Author :
Moonseo Park ; Miller, David J.
Author_Institution :
Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA
Volume :
8
Issue :
6
fYear :
1999
fDate :
6/1/1999 12:00:00 AM
Firstpage :
863
Lastpage :
867
Abstract :
Joint source-channel (JSC) decoding based on residual source redundancy is a technique for providing channel robustness to quantized data. Previous work assumed a model equivalent to viewing the encoder/noisy channel tandem as a discrete hidden Markov model (HMM) with transmitted indices the hidden states. We generalize this HMM-based (1-D) approach for images, using the more powerful hidden Markov mesh random field (HMMRF) model. While previous state estimation methods for HMMRFs base estimates on only a causal subset of the observed data, our new method uses both causal and anticausal subsets. For JSC-based image decoding, the new method provides significant benefits over several competing techniques
Keywords :
combined source-channel coding; decoding; hidden Markov models; image coding; least mean squares methods; noise; quantisation (signal); random processes; state estimation; HMM; HMMRF model; MMSE; anticausal subset; causal subset; channel robustness; discrete hidden Markov model; encoder/noisy channel tandem; hidden Markov mesh random field; hidden states; image compression; image decoding; joint source-channel coding; joint source-channel decoding; minimum mean-squared estimation; noisy channels; observed data; quantized data; residual source redundancy; state estimation methods; transmitted indices; Channel coding; Decoding; Hidden Markov models; Image coding; Image processing; Least mean squares methods; Optimization methods; Redundancy; Robustness; State estimation;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/83.766862
Filename :
766862
Link To Document :
بازگشت