DocumentCode :
1513172
Title :
Multiclass linear dimension reduction by weighted pairwise Fisher criteria
Author :
Loog, Marco ; Duin, R.P.W. ; Haeb-Umbach, R.
Author_Institution :
Image Sci. Inst., Univ. Med. Center, Utrecht, Netherlands
Volume :
23
Issue :
7
fYear :
2001
fDate :
7/1/2001 12:00:00 AM
Firstpage :
762
Lastpage :
766
Abstract :
We derive a class of computationally inexpensive linear dimension reduction criteria by introducing a weighted variant of the well-known K-class Fisher criterion associated with linear discriminant analysis (LDA). It can be seen that LDA weights contributions of individual class pairs according to the Euclidean distance of the respective class means. We generalize upon LDA by introducing a different weighting function
Keywords :
Bayes methods; error statistics; pattern classification; statistical analysis; Bayes error; Euclidean distance; Fisher criterion; approximate pairwise accuracy; linear dimension reduction; linear discriminant analysis; statistical pattern classification; weighting function; Computer Society; Computer networks; Eigenvalues and eigenfunctions; Iterative methods; Linear discriminant analysis; Maximum likelihood estimation; Neural networks; Parameter estimation; Scattering; State estimation;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/34.935849
Filename :
935849
Link To Document :
بازگشت