DocumentCode :
1515000
Title :
A polynomial time algorithm for the local testability problem of deterministic finite automata
Author :
Kim, Sam M. ; McNaughton, Robert ; McCloskey, Robert
Author_Institution :
Dept. of Comput. Sci., Rensselaer Polytech. Inst., Troy, NY, USA
Volume :
40
Issue :
10
fYear :
1991
fDate :
10/1/1991 12:00:00 AM
Firstpage :
1087
Lastpage :
1093
Abstract :
The local testability problem of deterministic finite automata is investigated. A locally testable language is a language with the property that, for some nonnegative integer k, whether or not a word w is in the language depends on (1) the prefix and suffix of w of length k, and (2) the set of substrings of w length k+1, without regard to the order in which these substrings occur. The local testability problem is, given a deterministic finite automation, to decide whether or not it accepts a locally testable language. The authors present an O(n 2) time algorithm for the local testability problem based on two simple properties that characterize locally testable automata
Keywords :
computational complexity; deterministic automata; finite automata; formal languages; deterministic finite automata; local testability; locally testable language; nonnegative integer; polynomial time algorithm; prefix; substrings; suffix; word; Automata; Automatic testing; Computer science; Image recognition; Information science; Integrated circuit testing; Pattern recognition; Polynomials;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/12.93741
Filename :
93741
Link To Document :
بازگشت