DocumentCode :
1515898
Title :
PopTract: Population-Based Tractography
Author :
Pew-Thian Yap ; Gilmore, John H. ; Weili Lin ; Dinggang Shen
Author_Institution :
Dept. of Radiol., Univ. of North Carolina, Chapel Hill, NC, USA
Volume :
30
Issue :
10
fYear :
2011
Firstpage :
1829
Lastpage :
1840
Abstract :
White matter fiber tractography plays a key role in the in vivo understanding of brain circuitry. For tract-based comparison of a population of images, a common approach is to first generate an atlas by averaging, after spatial normalization, all images in the population, and then perform tractography using the constructed atlas. The reconstructed fiber trajectories form a common geometry onto which diffusion properties of each individual subject can be projected based on the corresponding locations in the subject native space. However, in the case of high angular resolution diffusion imaging (HARDI), where modeling fiber crossings is an important goal, the above-mentioned averaging method for generating an atlas results in significant error in the estimation of local fiber orientations and causes a major loss of fiber crossings. These limitatitons have significant impact on the accuracy of the reconstructed fiber trajectories and jeopardize subsequent tract-based analysis. As a remedy, we present in this paper a more effective means of performing tractography at a population level. Our method entails determining a bipolar Watson distribution at each voxel location based on information given by all images in the population, giving us not only the local principal orientations of the fiber pathways, but also confidence levels of how reliable these orientations are across subjects. The distribution field is then fed as an input to a probabilistic tractography framework for reconstructing a set of fiber trajectories that are consistent across all images in the population. We observe that the proposed method, called PopTract, results in significantly better preservation of fiber crossings, and hence yields better trajectory reconstruction in the atlas space.
Keywords :
biodiffusion; biomedical MRI; brain; image reconstruction; medical image processing; neurophysiology; HARDI; PopTract; atlas generation; atlas space trajectory reconstruction; bipolar Watson distribution; brain circuitry; diffusion properties; fiber crossings; high angular resolution diffusion imaging; local fiber orientation estimation; population based tractography; reconstructed fiber trajectories; spatial normalisation; tract based image comparison; white matter fiber tractography; Diffusion tensor imaging; Image reconstruction; Interpolation; Sorting; Tensile stress; Trajectory; Brain circuitry; diffusion-weighted imaging; fiber tractography; population tractography; white matter; Adult; Algorithms; Brain; Computer Simulation; Databases, Factual; Diffusion Tensor Imaging; Humans; Image Processing, Computer-Assisted; Infant; Infant, Newborn; Neural Pathways; Signal Processing, Computer-Assisted; Signal-To-Noise Ratio;
fLanguage :
English
Journal_Title :
Medical Imaging, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0062
Type :
jour
DOI :
10.1109/TMI.2011.2154385
Filename :
5766754
Link To Document :
بازگشت