DocumentCode :
1516881
Title :
Affine Grassmann Codes
Author :
Beelen, Peter ; Ghorpade, Sudhir R. ; HØholdt, Tom
Author_Institution :
Dept. of Math., Tech. Univ. of Denmark, Lyngby, Denmark
Volume :
56
Issue :
7
fYear :
2010
fDate :
7/1/2010 12:00:00 AM
Firstpage :
3166
Lastpage :
3176
Abstract :
We consider a new class of linear codes, called affine Grassmann codes. These can be viewed as a variant of generalized Reed-Muller codes and are closely related to Grassmann codes. We determine the length, dimension, and the minimum distance of any affine Grassmann code. Moreover, we show that affine Grassmann codes have a large automorphism group and determine the number of minimum weight codewords.
Keywords :
Reed-Muller codes; error correction codes; linear codes; Reed-Muller codes; affine Grassmann codes; automorphism group; linear error correcting codes; minimum weight codewords; Error correction codes; Galois fields; Linear code; Mathematics; Polynomials; Automorphism group; Grassmann codes; number of minimum weight codewords;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2010.2048470
Filename :
5484977
Link To Document :
بازگشت