Title :
Silicon Substrate Removal of GaN DHFETs for Enhanced (<1100 V) Breakdown Voltage
Author :
Srivastava, Puneet ; Das, Jo ; Visalli, Domenica ; Derluyn, Joff ; Van Hove, Marleen ; Malinowski, Pawel E. ; Marcon, Denis ; Geens, Karen ; Cheng, Kai ; Degroote, Stefan ; Leys, Maarten ; Germain, Marianne ; Decoutere, Stefaan ; Mertens, Robert P. ; Borg
Author_Institution :
IMEC, Leuven, Belgium
Abstract :
In this letter, we present a novel approach to enhance the breakdown voltage (VBD) for AlGaN/GaN/AlGaN double-heterostructure FETs (DHFETs), grown by metal-organic chemical vapor deposition on Si (111) substrates through a silicon-substrate-removal and a layer-transfer process. Before removing the Si substrate, both buffer isolation test structures and DHFET devices showed a saturation of VBD due to the electrical breakdown through the Si substrate. We observed a VBD saturation of 500 V for isolation gaps larger than 6 μm . After Si removal, we measured a VBD enhancement of the AlGaN buffer to 1100 V for buffer isolation structures with an isolation gap of 12 μm. The DHFET devices with a gate-drain (LGD) distance of 15 μm have a VBD > 1100 V compared with ~300 V for devices with Si substrate. Moreover, from Hall measurements, we conclude that the substrate-removal and layer-transfer processes have no impact on the 2-D electron gas channel properties.
Keywords :
chemical vapour deposition; electric breakdown; electron gas; elemental semiconductors; gallium compounds; high electron mobility transistors; silicon; 2D electron gas channel properties; AlGaN; DHFET devices; Hall measurements; Si; breakdown voltage; buffer isolation test structures; double-heterostructure FET; layer-transfer process; layer-transfer processes; metal-organic chemical vapor deposition; silicon substrate removal; silicon-substrate-removal; size 12 mum; substrate-removal; voltage 1100 V; AlGaN/GaN/AlGaN; Hall measurement; breakdown voltage; double-heterostructure FETs (DHFETs); metal–organic chemical vapor deposition (MOCVD); silicon substrate removal;
Journal_Title :
Electron Device Letters, IEEE
DOI :
10.1109/LED.2010.2050673