• DocumentCode
    1521028
  • Title

    Transductive Ordinal Regression

  • Author

    Chun-Wei Seah ; Tsang, I.W. ; Yew-Soon Ong

  • Author_Institution
    Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore
  • Volume
    23
  • Issue
    7
  • fYear
    2012
  • fDate
    7/1/2012 12:00:00 AM
  • Firstpage
    1074
  • Lastpage
    1086
  • Abstract
    Ordinal regression is commonly formulated as a multiclass problem with ordinal constraints. The challenge of designing accurate classifiers for ordinal regression generally increases with the number of classes involved, due to the large number of labeled patterns that are needed. The availability of ordinal class labels, however, is often costly to calibrate or difficult to obtain. Unlabeled patterns, on the other hand, often exist in much greater abundance and are freely available. To take benefits from the abundance of unlabeled patterns, we present a novel transductive learning paradigm for ordinal regression in this paper, namely transductive ordinal regression (TOR). The key challenge of this paper lies in the precise estimation of both the ordinal class label of the unlabeled data and the decision functions of the ordinal classes, simultaneously. The core elements of the proposed TOR include an objective function that caters to several commonly used loss functions casted in transductive settings, for general ordinal regression. A label swapping scheme that facilitates a strictly monotonic decrease in the objective function value is also introduced. Extensive numerical studies on commonly used benchmark datasets including the real-world sentiment prediction problem are then presented to showcase the characteristics and efficacies of the proposed TOR. Further, comparisons to recent state-of-the-art ordinal regression methods demonstrate the introduced transductive learning paradigm for ordinal regression led to the robust and improved performance.
  • Keywords
    learning (artificial intelligence); pattern classification; regression analysis; label swapping scheme; labeled pattern; multiclass problem; objective function value; ordinal class label; ordinal constraint; transductive learning paradigm; transductive ordinal regression; Convergence; Fasteners; Motion pictures; Multiprotocol label switching; Prediction algorithms; Training; Vectors; Cluster assumption; ordinal classification; ordinal loss function; ordinal regression (OR); support vector machines (SVMs); transductive learning;
  • fLanguage
    English
  • Journal_Title
    Neural Networks and Learning Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    2162-237X
  • Type

    jour

  • DOI
    10.1109/TNNLS.2012.2198240
  • Filename
    6203451