DocumentCode :
1523964
Title :
New Square-Root Factorization of Inverse Toeplitz Matrices
Author :
Wahlberg, Bo ; Stoica, Petre
Author_Institution :
Autom. Control Lab. & ACCESS, KTH-R. Inst. of Technol., Stockholm, Sweden
Volume :
17
Issue :
2
fYear :
2010
Firstpage :
137
Lastpage :
140
Abstract :
Square-root (in particular, Cholesky) factorization of Toeplitz matrices and of their inverses is a classical area of research. The Schur algorithm yields directly the Cholesky factorization of a symmetric Toeplitz matrix, whereas the Levinson algorithm does the same for the inverse matrix. The objective of this letter is to use results from the theory of rational orthonormal functions to derive square-root factorizations of the inverse of an ntimesn positive definite Toeplitz matrix. The main result is a new factorization based on the Takenaka-Malmquist functions, that is parameterized by the roots of the corresponding auto-regressive polynomial of order n . We will also discuss briefly the connection between our analysis and some classical results such as Schur polynomials and the Gohberg-Semencul inversion formula.
Keywords :
Toeplitz matrices; autoregressive processes; matrix decomposition; polynomial matrices; Cholesky factorization; Gohberg-Semencul inversion formula; Levinson algorithm; Schur algorithm; Schur polynomials; Takenaka-Malmquist functions; auto-regressive polynomial; inverse Toeplitz matrices; square-root factorization; symmetric Toeplitz matrix; AR processes; Toeplitz matrix; rational orthonormal functions; square-root and Cholesky factorization;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2009.2035372
Filename :
5299167
Link To Document :
بازگشت