DocumentCode :
1524560
Title :
Elliptically Contoured Distributions for Anomalous Change Detection in Hyperspectral Imagery
Author :
Theiler, James ; Scovel, Clint ; Wohlberg, Brendt ; Foy, Bernard R.
Author_Institution :
Los Alamos Nat. Lab., Los Alamos, NM, USA
Volume :
7
Issue :
2
fYear :
2010
fDate :
4/1/2010 12:00:00 AM
Firstpage :
271
Lastpage :
275
Abstract :
We derive a class of algorithms for detecting anomalous changes in hyperspectral image pairs by modeling the data with elliptically contoured (EC) distributions. These algorithms are generalizations of well-known detectors that are obtained when the EC function is Gaussian. The performance of these EC-based anomalous change detectors is assessed on real data using both real and simulated changes. In these experiments, the EC-based detectors substantially outperform their Gaussian counterparts.
Keywords :
geophysical image processing; geophysical techniques; pattern recognition; Gaussian distributions; adaptive signal detection; anomalous change detection; covariance matrices; data-model ellipsoids; elliptically contoured distributions; elliptically contoured-based anomalous change detectors; hyperspectral imagery; image analysis; pattern recognition; remote sensing; Adaptive signal detection; Gaussian distributions; algorithms; covariance matrices; data-model ellipsoids; image analysis; pattern recognition; remote sensing;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
Publisher :
ieee
ISSN :
1545-598X
Type :
jour
DOI :
10.1109/LGRS.2009.2032565
Filename :
5299262
Link To Document :
بازگشت