Title :
Quasi-ray Gaussian beam algorithm for time-harmonic two-dimensional scattering by moderately rough interfaces
Author :
Galdi, Vincenzo ; Felsen, Leopold B. ; Castanon, David A.
Author_Institution :
Dept. of Electr. & Comput. Eng., Boston Univ., MA, USA
fDate :
9/1/2001 12:00:00 AM
Abstract :
Gabor-based Gaussian beam (GB) algorithms, in conjunction with the complex source point (CSP) method for generating beam-like wave objects, have found application in a variety of high-frequency wave propagation and diffraction scenarios. Of special interest for efficient numerical implementation is the noncollimated narrow-waisted species of GB, which reduces the computationally intensive complex ray tracing for collimated GB propagation and scattering to quasi-real ray tracing, without the failure of strictly real ray field algorithms in caustic and other transition regions. The Gabor-based narrow-waisted CSP-GB method has been applied previously to two-dimensional (2-D) propagation from extended nonfocused and focused aperture distributions through arbitrarily curved 2-D layered environments. In this 2-D study the method is applied to aperture-excited field scattering from, and transmission through, a moderately rough interface between two dielectric media. It is shown that the algorithm produces accurate and computationally efficient solutions for this complex propagation environment, over a range of calibrated combinations of the problem parameters. One of the potential uses of the algorithm is as an efficient forward solver for inverse problems concerned with profile and object reconstruction
Keywords :
Gaussian processes; dielectric bodies; electromagnetic fields; electromagnetic wave diffraction; electromagnetic wave propagation; electromagnetic wave scattering; electromagnetic wave transmission; inhomogeneous media; inverse problems; ray tracing; rough surfaces; signal reconstruction; 2D propagation; Gabor-based Gaussian beam algorithms; aperture-excited field scattering; beam-like wave objects; caustic transition regions; collimated GB propagation; collimated GB scattering; complex source point method; curved 2D layered environments; dielectric media; efficient forward solver; efficient numerical implementation; extended focused aperture distribution; extended nonfocused aperture distribution; high-frequency wave diffraction; high-frequency wave propagation; inverse problems; moderately rough interface; moderately rough interfaces; noncollimated narrow-waisted GB; object reconstruction; profile reconstruction; quasi-ray Gaussian beam algorithm; quasi-real ray tracing; ray field algorithms; ray tracing; time-harmonic 2D scattering; time-harmonic two-dimensional scattering; transition regions; Apertures; Buried object detection; Dielectrics; Electromagnetic scattering; Radar scattering; Ray tracing; Rough surfaces; Surface reconstruction; Surface roughness; Two dimensional displays;
Journal_Title :
Antennas and Propagation, IEEE Transactions on