Title :
A recurrent self-organizing neural fuzzy inference network
Author :
Juang, Chia-Feng ; Lin, Chin-Teng
Author_Institution :
Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan
fDate :
7/1/1999 12:00:00 AM
Abstract :
A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in the network are built by adding some feedback connections representing the memory elements to a feedforward neural fuzzy network. Each weight as well as node in the RSONFIN has its own meaning and represents a special element in a fuzzy rule. There are no hidden nodes initially in the RSONFIN. They are created online via concurrent structure identification and parameter identification. The structure learning together with the parameter learning forms a fast learning algorithm for building a small, yet powerful, dynamic neural fuzzy network. Two major characteristics of the RSONFIN can thus be seen: 1) the recurrent property of the RSONFIN makes it suitable for dealing with temporal problems and 2) no predetermination, like the number of hidden nodes, must be given, since the RSONFIN can find its optimal structure and parameters automatically and quickly. Moreover, to reduce the number of fuzzy rules generated, a flexible input partition method, the aligned clustering-based algorithm, is proposed. Various simulations on temporal problems are done and performance comparisons with some existing recurrent networks are also made. Efficiency of the RSONFIN is verified from these results
Keywords :
feedforward neural nets; fuzzy logic; fuzzy neural nets; inference mechanisms; multilayer perceptrons; parameter estimation; recurrent neural nets; self-organising feature maps; aligned clustering-based algorithm; dynamic fuzzy inference; feedback connections; feedforward neural fuzzy network; flexible input partition method; recurrent multilayered connectionist network; recurrent self-organizing neural fuzzy inference network; temporal relations; Buildings; Clustering algorithms; Feedforward neural networks; Fuzzy neural networks; Fuzzy systems; Neural networks; Neurofeedback; Parameter estimation; Partitioning algorithms; Recurrent neural networks;
Journal_Title :
Neural Networks, IEEE Transactions on