DocumentCode :
1527368
Title :
Effect of initial joint position on nerve-cuff recordings of muscle afferents in rabbits
Author :
Jensen, Winnie ; Lawrence, Stephen M. ; Riso, Ron R. ; Sinkjær, Thomas
Author_Institution :
Center for Sensory-Motor Interaction, Aalborg Univ., Denmark
Volume :
9
Issue :
3
fYear :
2001
Firstpage :
265
Lastpage :
273
Abstract :
The objective was to characterize nerve-cuff recordings of muscle afferents to joint rotation over a large part of the physiological joint range. This information is needed to develop control strategies for functional electrical stimulation (FES) systems using muscle afferent signals for sensory feedback. Five acute rabbit experiments were performed. Tripolar cuff electrodes were implanted around the tibial and peroneal divisions of the sciatic nerve in the rabbit´s left leg. The electroneurograms (ENG) were recorded during passive ankle rotation, using a ramp-and-hold profile starting at seven different joint positions (excursion=5°, velocity=10°/s, initial positions 60°, 70°, 80°, 90°, 100°, 110°, and 120°). The amplitude of the afferent activity was dependent on the initial joint position. The steady-state sensitivity of both nerve responses increased with increasing joint flexion, whereas the dynamic sensitivity increased initially but then decreased. The results indicate that recordings of the muscle afferents may provide reliable information over only a part of the physiological joint range, Despite this limitation, muscle afferent activity may be useful for motion feedback if the movement to be controlled is within a narrow joint range such as postural sway.
Keywords :
biocontrol; biomedical electrodes; closed loop systems; electromyography; feedback; mechanoception; neuromuscular stimulation; control strategies; dynamic sensitivity; electroneurograms; functional electrical stimulation; initial joint position effect; joint rotation; motion feedback; muscle afferents; nerve-cuff recordings; passive ankle rotation; postural sway; rabbits; ramp-and-hold profile; sciatic nerve; sensory feedback; Associate members; Control systems; Electrodes; Feedback; Humans; Muscles; Nerve fibers; Neuromuscular stimulation; Rabbits; Tendons; Afferent Pathways; Animals; Electric Stimulation Therapy; Electrodes, Implanted; Female; Muscle, Skeletal; Neuromuscular Junction; Peroneal Nerve; Rabbits; Range of Motion, Articular; Reflex, Stretch; Tibial Nerve;
fLanguage :
English
Journal_Title :
Neural Systems and Rehabilitation Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1534-4320
Type :
jour
DOI :
10.1109/7333.948454
Filename :
948454
Link To Document :
بازگشت