Title :
Efficient training of RBF neural networks for pattern recognition
Author :
Lampariello, Francesco ; Sciandrone, Marco
Author_Institution :
Istituto di Analisi dei Sistemi ed Inf., CNR, Rome, Italy
fDate :
9/1/2001 12:00:00 AM
Abstract :
The problem of training a radial basis function (RBF) neural network for distinguishing two disjoint sets in Rn is considered. The network parameters can be determined by minimizing an error function that measures the degree of success in the recognition of a given number of training patterns. In this paper, taking into account the specific feature of classification problems, where the goal is to obtain that the network outputs take values above or below a fixed threshold, we propose an approach alternative to the classical one that makes use of the least-squares error function. In particular, the problem is formulated in terms of a system of nonlinear inequalities, and a suitable error function, which depends only on the violated inequalities, is defined. Then, a training algorithm based on this formulation is presented. Finally, the results obtained by applying the algorithm to two test problems are compared with those derived by adopting the commonly used least-squares error function. The results show the effectiveness of the proposed approach in RBF network training for pattern recognition, mainly in terms of computational time saving
Keywords :
error analysis; learning (artificial intelligence); least squares approximations; pattern classification; radial basis function networks; RBF neural networks; error function; learning; least-squares error; nonlinear inequality; pattern classification; pattern recognition; radial basis function network; Computer networks; Convergence; Error correction; Multi-layer neural network; Multilayer perceptrons; Network topology; Neural networks; Pattern recognition; Radial basis function networks; Testing;
Journal_Title :
Neural Networks, IEEE Transactions on