DocumentCode :
1533480
Title :
Lower bounds for Bayes error estimation
Author :
Antos, András ; Devroye, Luc ; Györfi, László
Author_Institution :
Comput. & Autom. Res. Inst., Hungarian Acad. of Sci., Budapest, Hungary
Volume :
21
Issue :
7
fYear :
1999
fDate :
7/1/1999 12:00:00 AM
Firstpage :
643
Lastpage :
645
Abstract :
We give a short proof of the following result. Let (X,Y) be any distribution on N×{0,1}, and let (X1,Y1),...,(Xn,Yn) be an i.i.d. sample drawn from this distribution. In discrimination, the Bayes error L*=infgP{g(X)≠Y} is of crucial importance. Here we show that without further conditions on the distribution of (X,Y), no rate-of-convergence results can be obtained. Let φn(X1,Y1,...,Xn,Yn ) be an estimate of the Bayes error, and let {φn(.)} be a sequence of such estimates. For any sequence {an} of positive numbers converging to zero, a distribution of (X,Y) may be found such that E{|L*-φn(X1,Y 1,...,Xn,Yn)|}⩾an often converges infinitely
Keywords :
Bayes methods; convergence of numerical methods; error analysis; estimation theory; pattern recognition; statistical analysis; Bayes error estimation; convergence; discrimination; lower bounds; nonparametric estimation; statistical pattern recognition; Convergence; Error analysis; Error probability; Estimation error; Pattern recognition; Radiofrequency interference;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/34.777375
Filename :
777375
Link To Document :
بازگشت