DocumentCode :
1535028
Title :
Wavelet-Galerkin scheme of time-dependent inhomogeneous electromagnetic problems
Author :
Cheong, Young Wook ; Lee, Yong Min ; Ra, Keuk Hwan ; Kang, Joon Gil ; Shin, Chull Chae
Author_Institution :
Commun. Eng. R&D Inst., Ace Technol., Inchon, South Korea
Volume :
9
Issue :
8
fYear :
1999
fDate :
8/1/1999 12:00:00 AM
Firstpage :
297
Lastpage :
299
Abstract :
A wavelet-Galerkin scheme based on the time-dependent Maxwell´s equations is presented. Daubechies´ wavelet with two vanishing wavelet moments is expanded for basis function in spatial domain, and Yee´s leap-frog approach is applied. The shifted interpolation property of Daubechies´ wavelet family leads to the simplified formulations for inhomogeneous media without the additional matrices for the integral or material operator. The storage effectiveness, execution time reduction, and accuracy of this scheme are demonstrated by calculating the resonant frequencies of the homogeneous and inhomogeneous cavities
Keywords :
Galerkin method; Maxwell equations; cavity resonators; electromagnetic wave scattering; inhomogeneous media; interpolation; time-domain analysis; wavelet transforms; Daubechies wavelet; Yee leap-frog method; cavity resonant frequency; inhomogeneous electromagnetic scattering; numerical analysis; shifted interpolation; time-dependent Maxwell equations; wavelet-Galerkin method; Electromagnetic scattering; Gas insulated transmission lines; Integral equations; Interpolation; Lattices; Maxwell equations; Nonhomogeneous media; Sampling methods; Testing; Wavelet domain;
fLanguage :
English
Journal_Title :
Microwave and Guided Wave Letters, IEEE
Publisher :
ieee
ISSN :
1051-8207
Type :
jour
DOI :
10.1109/75.779907
Filename :
779907
Link To Document :
بازگشت