DocumentCode :
1535759
Title :
Spatial Encoding of Finite Difference Time Domain Acoustic Models for Auralization
Author :
Southern, Alex ; Murphy, Damian T. ; Savioja, Lauri
Author_Institution :
Department of Media Technology, Aalto University School of Science, Espoo, Finland
Volume :
20
Issue :
9
fYear :
2012
Firstpage :
2420
Lastpage :
2432
Abstract :
A single room impulse response can reveal information about the acoustics of a given space in both objective, and, when used for auralization, subjective terms. However, for additional spatial information, or more accurate and perceptually convincing auralization, multiple impulse responses are needed. Higher order Ambisonics is a robust means of capturing the spatial qualities of an acoustic space over multiple channels for decoding and rendering over many possible speaker layouts. A method for obtaining N th-order Ambisonic impulse responses from a room acoustic model, based on lower orders using differential microphone techniques is presented. This is tested using a third-order encoding of a 2-D finite difference time domain room acoustic simulation based on multiple circular arrays of receivers. Accurate channel directional profiles are obtained and results are verified in a series of listening tests comparing the localization of a sound source placed within the given simulation to the same source encoded directly. This generic encoding scheme can be applied to any room acoustic simulation technique where it is possible to obtain impulse responses across multiple receiver positions. Although the proposed method encompasses horizontal encoding only, it can also be applied directly in 3-D simulations where height information is not required in the final auralization.
Keywords :
Acoustics; Encoding; Finite difference methods; Mathematical model; Microphones; Receivers; Time domain analysis; Acoustic; FDTD; auralization; spatial encoding;
fLanguage :
English
Journal_Title :
Audio, Speech, and Language Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1558-7916
Type :
jour
DOI :
10.1109/TASL.2012.2203806
Filename :
6214587
Link To Document :
بازگشت