Title :
Codes over rings from curves of higher genus
Author :
Veloch, J.F. ; Walker, Judy L.
Author_Institution :
Dept. of Math., Texas Univ., Austin, TX, USA
fDate :
9/1/1999 12:00:00 AM
Abstract :
We construct certain error-correcting codes over finite rings and estimate their parameters. These codes are constructed using plane curves and the estimates for their parameters rely on constructing “lifts” of these curves and then estimating the size of certain exponential sums
Keywords :
algebraic geometric codes; error correction codes; linear codes; parameter estimation; Witt vectors; algebraic geometric codes; codes over rings; curve lifts; error-correcting codes; exponential sums; finite rings; higher genus curves; linear codes; lower bound; parameter estimation; plane curves; size estimation; Binary codes; Elliptic curves; Error correction codes; Galois fields; Geometry; Helium; Linear code; Mathematics; Parameter estimation; Veins;
Journal_Title :
Information Theory, IEEE Transactions on